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Abstract— To empower an autonomous robot to perform
long-term navigation in a given area, a concurrent localization
and map update algorithm is required. In this paper, we
tackle this problem by providing both theoretical analysis and
algorithm design for robotic systems equipped with 2D laser
range finders. The first key contribution of this paper is that
we propose a hybrid signed distance field (SDF) framework for
laser based localization. The proposed hybrid SDF integrates
two methods with complementary characteristics, namely Eu-
clidean SDF (ESDF) and Truncated SDF (TSDF). With our
framework, accurate pose estimation and fast map update
can be performed simultaneously. Moreover, we introduce a
novel sliding window estimator which attains better accuracy
by consistently utilizing sensor and map information with
both scan-to-scan and scan-to-map data association. Real-world
experimental results demonstrate that the proposed algorithm
can be used for commercial robots in various environments
with long-term usage. Experiments also show that our approach
outperforms competing approaches by a wide margin.

I. INTRODUCTION

Accurate global pose estimation is necessary for mobile
robots to navigate their surroundings effectively. In robotics
community, this localization problem is widely studied in
recent 20 years, especially for the robots that are equipped
with range sensors like lidar or sonar [1][2][3][4][5]. Most of
the existing algorithms can be categorized into two groups:
localization and mapping in an unknown environment[2][3]
or in previously visited areas with pre-built localization maps
[4][5]. This paper contributes to the latter one, enabling
mobile robots to perform autonomous navigation repetitively
under different conditions without human intervention. This
overcomes one critical challenge for long-term autonomy of
mobile robots and will make their low-cost commercial usage
possible.

To achieve this goal, a properly designed algorithm should
satisfy all following requirements. First of all, pose esti-
mation with respect to an existing localization map should
be of high precision and also be robust under different
working conditions, e.g., surrounded with moving objects,
different reflection properties of building materials, and so
on. Secondly, although the operation area is previously
visited and explored, in real-world applications it is in-
evitable that the environment changes over time, e.g., fur-
niture re-arrangement in indoor spaces. Therefore, the ca-
pability of online map verification and update determines
the performance of mobile robots over time. Finally, for
wide real-world application and commercialization, both
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(a) prior occupancy grid map (b) raw laser scan measurements

(c) localization results on a prior
map

(d) dynamic update for the prior
map

Fig. 1: Representative building blocks of our proposed algo-
rithm. With a prior occupancy grid map (a), and raw laser
scan measurements (b), our approach estimates robot pose
with respect to the global map (c) and perform dynamic map
update (d). Note that, the occupancy grid map here is only
used for visualization, and the pose estimation depends on
the proposed SDF map.

high-precision pose estimation and map update components
should be able to operate in real time on low-cost platforms.

The existing algorithms have certain shortcomings. First,
existing map-based algorithms either require heavy com-
putation as the ones that employ Monte Carlo approaches
[4][5], or need well-tuned initial pose estimates to guarantee
estimator convergence[3]. Moreover, we notice that most
algorithms do not explicitly model the over-time changes
of the operation environment (neither the corresponding
localization map). Instead, they simply probabilistically re-
ject the sensor measurements corresponding to the changed
regions[6]. For small map changes this leads to reduced
estimation accuracy and for large changes this can result in
localization failures.

To address these limitations, in this paper, we present SDF-
Loc, a concurrent localization and map update algorithm,
based on hybrid signed distance field. The hybrid SDF
scheme integrates ESDF and TSDF, which have comple-
mentary characteristics. For laser based localization problem,
we show that ESDF leads to better estimation accuracy
and convergence properties (see Section IV for details) but
computationally expensive to be updated online to adapt to
the environment changes. On the other hand, TSDF can be
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Fig. 2: The system overview of SDF-Loc

updated efficiently, but less robust in numerical optimization.
This motivates us to combine them together. The main char-
acteristics and contribution of the paper can be characterized
as follows:

• A novel laser map representation by ESDF as well as
the corresponding scan-to-map optimization function.
The ESDF map can either be built incrementally or be
converted from other map format, e.g., the widely used
occupancy grid map [7].

• An nonlinear optimization based sliding-window esti-
mator, which composes of sensor and map information
in both scan-to-scan and scan-to-map manners to im-
prove estimation accuracy and convergence properties.

• We also propose an efficient online map update method,
which utilizes TSDF framework to merge new semi-
static measurement points and subsequently build ESDF
incrementally from updated TSDF.

• Finally, we provide real-world experimental results to
demonstrate the accuracy and effectiveness of the pro-
posed algorithm, as well as the comparison to compet-
ing approaches.

Fig. 1 shows the representative building blocks of our
algorithm.

II. RELATED WORK

In this section, we will give a brief review on the related
work. The existing work on laser based localization can be
categorized by the methods of processing laser scans and
parameterizing laser maps. Generally, there are three types
of approaches: sparse feature parameterization based ones
[8][9][10], dense representation based ones [11][3][2][12],
and recently introduced end-to-end deep learning based
ones[13][14]. The first type of algorithms seeks to detect and
geometrically parameterize repeatable features from laser
scans, including but not limited to straight lines[8], corner

points[10], and blobs[9]. Given detected sparse features,
a data association step will be performed across frames,
relying on either features’ geometric information[8] or their
corresponding descriptors[9]. Once that is done, robot poses
can be estimated either jointly with those features or condi-
tioned on offline computed ones. On the other hand, dense
algorithms process entire laser scan without pre-selecting
information. Occupancy grid mapping[11] is one of the
most common dense approaches used nowadays, which
presents 2D map via grid cells and computes occupancy
probability for each cell. Various localization algorithms
have been developed under this framework, and majority of
them use either Particle filter estimation[11][3] or nonlinear
iterative optimization[2]. Finally, in recently years, a couple
of deep neural network based algorithms have also been
proposed for tacking problems like laser odometry[13] or
scan matching[14].

Recently, among above mentioned algorithms, dense based
ones are more preferred in commercial applications. This
is due to the fact that this type of algorithms use entire
laser scan information which provides better accuracy and ro-
bustness guarantees. However, high-precision real-time pose
estimation in occupancy grid framework[11] is problematic.
Particle filter based approaches[11][3] can attain good ac-
curacy, but its computational cost increases linearly as the
number of particle increases. On the other hand, nonlinear
optimization based approaches can be employed[3][2], but
due to the sparsity of occupancy grid map representation,
the corresponding estimators can only converge when good
initial pose estimates are provided. This might not be always
possible for long-term robotic operations. Borrowing the
concept of TSDF from computer vision problems, Fossel
[12] proposed a TSDF based localization algorithm, attaining
better accuracy compared to traditional occupancy grids.
Recent work also shows that TSDF can be directly used for



mapping, navigation, and path planning [15] [16]. However,
TSDF is highly compressed map representation, by only
keeping meaningful values near structural surfaces. As a re-
sult, when initial pose estimates are of large errors, nonlinear
iterative minimization via TSDF still has large possibility to
fall into local minimum solutions. To this end, we introduce
ESDF[17][18] in this paper for improving the localization
performance.

Another important topic of robot localization is to deal
with dynamic environments, to detect and reject moving
objects and to merge newly appeared static object into maps.
The first problem is typically solved via frame-to-frame
dense data association, by minimizing geometric consistency
cost functions with respect to rigid motion assumption[19]
[20]. Alternatively, moving objects can be detected and clas-
sified using convolutional neural networks[21]. On the other
hand, to update localization maps, [22] utilizes temporary
local maps to keep track of the observations caused by
unexpected objects and uses both local maps and prior map
for localization. [23] introduced a method named dynamic
pose graph SLAM by introducing time as a parameter in the
optimization problem. Specifically, when a robot operates in
the same area multiple times, the pose graph will choose
keyframes dynamically from each run for computing a
map that best represents the current environment. Moreover,
Krajnı́k [24] [25] proposed a spatial-temporal occupancy
grid approach in which each grid stores information about
both occupancy persistency and periodicity. Based on that,
these approaches can predict the probability of grid cells at
different timestamps. However, occupancy persistency and
periodicity are different in different environmental condi-
tions, and those algorithms are not generic enough for off-
the-shelf commercial usage.

III. PROPOSED APPROACH

As mentioned previously, the focus of this paper is to
perform concurrent localization and map update in pre-
visited areas. Therefore, throughout this paper we assume
a pre-built localization map is available. We do not place
any limitation on the mapping algorithms that generate
localization maps, as different state-of-the-art algorithm can
be applied, e.g. [2] [23]. This is due to the fact that we do
not require to have a perfect prior map since we can perform
probabilistically map update to refine map details over time.

The overview of our system is shown in Fig. 2. Since
most mapping algorithms generate occupancy grid maps,
to make our algorithm convenient for usage, we first de-
scribe a pipeline for converting occupancy grid maps into
ESDF. Next, we describe our sliding-window estimator by
firstly introducing the basic formulation of our nonlinear
optimization cost function, including both scan-to-scan term
and scan-to-map term. Subsequently we will present both
terms with mathematical details. Finally, we describe our
proposed online map verification and update method.

A. Map Representation

The main problem of using occupancy grid map for non-
linear optimization is its sparsity in the corresponding gra-
dient map. Specifically, nonlinear optimization approaches
require computing gradients with respect to the map on
different positional axis. But due to the occupancy grid
sparsity, the majority of those elements will be identically
zero. As a result, when initial pose estimates are not highly
accurate, which is common in environments with large
structural changes or many moving objects, global optimal
convergence cannot be reached. To solve this problem, we
propose to use ESDF. ESDF is also a grid based map, in
which every grid contains its euclidean distance to the nearest
obstacle. We note that TSDF is another commonly used SDF
based representation, which calculates projective distance to
obstacles within short radius for each cell. It is clear that,
compared with occupancy grid and TSDF, ESDF does not
suffer from the ‘vanishing gradient problem’ due to its denser
map representation.

Algorithm 1 Map pre-processing: Convert occupancy grid
map into ESDF map.

1: GIVEN occupancy grid map P . prebuilt
2: for every grid cell c in P do
3: if P [c] == Occupied then
4: Count the freespace ratio in its surroundings: r(c)
5: if r(c) < rthreshold then
6: P [c]← Unknown
7: end if
8: end if
9: end for

10: Find connected components for free space elements.
11: Set cells with small number of connected components

as Unknown.
12: Perform fast Euclidean distance transformation.
13: Set Unknown cells’ distances to be negative.
14: OUTPUT ESDF . further usage

When an occupancy grid map is provided, the first step
of our proposed method is to convert it into ESDF repre-
sentation. We experimentally find that, many off-the-shelf
mapping algorithms do not perform well with respect to
some commonly seen materials, e.g., glasses and mirrors.
Therefore, before performing the occupancy grid map to
ESDF map conversion, we first apply a pre-processing filter
to remove ill-conditioned map regions. Note that, this step
is not necessary for all mapping algorithms, but it will help
seamlessly connect the proposed algorithm to most widely
used open-source implementations.

Specifically, we perform pre-processing based on the fol-
lowing criteria: all free-space cells should form a connected
component and unknown-space cells should be separated
from free-space cells by occupied-space cells. To present the
filter details, we introduce the following notation Occupied,
Free, and Unknown, to represent the corresponding cells.
For an Occupied cell, we compute the percentage of Free



(a) Occupancy grid map before pre-
processing.

(b) Euclidean distance map without
pre-processing.

(c) Pre-processed occupancy grid
map.

(d) Pre-processed Euclidean dis-
tance map.

Fig. 3: Representative map conversions case from occupancy
grid map to ESDF maps. (a) Occupancy grid map before
pre-processing step. The region corresponding to mirrors
is shown with a red circle. (b) ESDF map without pre-
processing. (c) Pre-processed occupancy grid map. (d) ESDF
map converted from pre-processed occupancy grid map.

cells in its surroundings. If that is smaller than a given
threshold, this Occupied cell cannot be trusted and we set it
to Unknown. On the other hand, for each Free cell, we
apply connected-components analysis to reject unsatisfied
Free cells, and set those as Unknown. Once this pre-
processing is finished, we propose to perform fast occupancy
grid map to ESDF map conversion, following the idea of
[26]. The complete process is described in Algorithm 1, and
a representative map conversion case can be seen in Fig. 3.

B. Estimator Formulation

In laser based localization, we seek to estimate 2D laser
poses with respect to the map coordinate frame over time.
Mathematically, at timestamp k, the 2D pose pk is:

pk =
[
xk, yk, θk

]T
(1)

where xk and yk represents the positional elements expressed
in the map frame, and θk is the heading angle. By denoting
the laser measurements at timestamp k as sk, and the prior
map as M, a probabilistic algorithm for computing pk can
be formulated as

p?k = argmin
pk

L (pk; sk,M) (2)

where L(·) is for computing scan to map difference as a
function of pose pk, conditioned on the map M and scan sk.

[3] is a representative algorithm of doing this. However, this
equation solves the highly nonlinear optimization problem
only relying on information of a single laser scan. As a result,
the volume of the used information is not enough, and it can
inevitably lead to local minimum solutions (See experimental
section for validation details).

To improve the estimation accuracy, we propose to use a
sliding window based algorithm, whose state at timestamp k
is:

xk =
[
pTk ,p

T
k−1, · · · ,pTk−N+1

]T
(3)

where N is the sliding window size. We formulate our
estimation algorithm as:

x?k = argmin
xk

( ∑
i=k−N+1,··· ,k−1

I (pi,pi+1; si, si+1)

+
∑

i=k−N+1,··· ,k

L (pi; si,M)

)
(4)

where I(·) is a function representing difference between two
scans based on their corresponding poses. By introducing
both scan to scan constraints as well as the sliding-window
optimizer, the localization problem can be solved with im-
proved performance.

Next, we will present laser frame-to-frame cost function
I(·) and frame-to-map cost functions L(·) in details.

C. Cost functions

We first present frame-to-map cost function. Since each
cell of ESDF map represents the distance to the closest
surface, we directly seek to minimize the sum of distance
values for all laser measurement points. Thus, we formulate
the cost function as:

L (pi; si,M) =
∑

j=1,··· ,K
F
(
D
(
mi
k

) )
(5)

where K is the number of scan points, mi
k is the range

measurement expressed in map coordinate frame,

mi
k =

[
cos θk − sin θk
sin θk cos θk

]
sik +

[
xk
yk

]
(6)

and F(·) is the Cauchy M-estimator

F (a) =
τ2

2
ln

(
1 +

(a
τ

)2)
(7)

where τ is the robust estimation parameter. Solving Eq. 5
requires computing the Euclidean distance value D(mi

k) as
well as its corresponding gradient, evaluated at the map
coordinate (mi

x,m
i
y). This can be approximated by using

bilinear interpolation on four grid cells from the latest
ESDF, which will be incrementally updated from TSDF (see
Section III-E for details).

On the other hand, to introduce frame-to-frame cost
function, we present the continuous time laser range flow



equation[19]:

ρ(ξ) = (six sinβ − siy cosβi −Riαkα)wθ +Rit+(
cosβi+

Riαkα sinβi

r

)
vx+

(
sinβi−R

i
αkα cosβi

r

)
vy=0

(8)

where ξ = (vx, vy, wθ) represents both positional and rota-
tional velocities, βi is the angle of the laser point si in laser
scan s, kα is a laser intrinsic parameter representing angular
resolution of laser beams, and Riα and Rit are the derivatives
of si with respect to range and time.

We note that, in the above equation, ρ(ξ) is linear in ξ.
Therefore, if we denote ∆t the time interval between two
consecutive scan, δ = (dx, dy, dθ) is the relative transforma-
tion between them, we can write:

ρ(δ) ' ρ(ξ∆t) = ρ(ξ)∆t = 0 (9)

The first approximation equation conforms the linear motion
assumption. For robots moving on 2D plane within short
time interval between consecutive laser scans (e.g., 75 ms),
this assumption is of small errors. Thus, the frame-to-frame
cost can be formulated by minimizing ρ(δ) with a robust
cost function, for all laser points in consecutive frames.

D. Sliding window optimization

With frame-to-frame and frame-to-map cost functions be-
ing formulated, we can rewrite the estimation problem Eq. 4
as:

x?k = argmin
xk

( ∑
i=k−N+1,··· ,k−1

∑
j=0,··· ,K

F
(
ρ(δ)

)
+

∑
i=k−N+1,··· ,k

∑
j=0,··· ,K

F
(
D
(
mi
k

) ))
(10)

We solve this non-linear minimization problem by ap-
plying Levenberg Marquardt method, which iteratively lin-
earizes the above cost function at each iteration. When a new
pose is obtained, we propose to marginalize the oldest pose
from the sliding window, and the oldest pose will be used
for map update.

It must be noted that a typical consistent sliding window
estimator must introduce a prior marginalization factor to
minimization problem, to avoid information loss, either in
information form [27] or covariance form [28] [29]. How-
ever, in our system, due to the existence of the global map,
we can simply remove the oldest frame since it is conditional
independent to other frames given the offline map.

E. Dynamic map update

Before we update the map, we must point out that there
are different styles of dynamic objects in an environment.
Similar to [6], we categorize the objects into three classes,
based on their dynamics:

• Static objects: Objects that will not change their poses
in the environments, like walls, fixed desks, etc. They
can be used as strong cues for localization.

• Semi-static objects: Objects that change their poses
with a relative low frequency, e.g., re-arranged furni-
tures. In this paper, we further assume these objects will
not change their positions when they are in laser’s FOV,
but they can move afterwards. Those objects should be
dynamically updated in localization maps.

• Dynamic objects: Objects that will change their po-
sitions when they are observed, e.g., moving people,
moving trolley and so on. They are neither used for
localization nor map update. They should be classified
as outliers.

Algorithm 2 Map update algorithm

1: GIVEN marginalized laser scan s
2: for every measurement si in s do
3: if Residue[si] > Rthre then
4: Set it as semi-static measurement.
5: Bresenham ray tracing into the ESDF.
6: Push back affected grid cells into vector Vc.
7: Group measurements for affected grid cells.
8: end if
9: end for

10: Laser scan number Nscan ← Nscan + 1
11: if Nscan > Nthre then
12: Nscan ← 0
13: for every grid cell ci in Vc do
14: Calculate incidence angles’ range Ar
15: if Ar > Athre then
16: Perform TSDF update
17: end if
18: end for
19: Build ESDF from TSDF incrementally
20: OUTPUT ESDF . further usage
21: OUTPUT Occupancy grid map . further usage
22: end if

Static objects and semi-static objects can be identified by
calculating the Euclidean distance residual values on the cor-
responding cells. If the distance is larger than preset thresh-
old Rthre, the corresponding measurement will be labeled as
semi-static measurement, otherwise as static measurement.
Dynamic objects can be detected and rejected simply by the
range flow calculation. Only semi-static measurements will
be used in map update.

Bresenhams ray tracing algorithm[30] is used to project
these semi-static measurements into grid cells, and the po-
tential affected grid cells are pushed into a vector. To further
speed up the update process, we use a method similar to
[31] and [16]. For each point in a laser scan, we project its
position to the corresponding grid cell, and group it with all
other points that are mapped to the same grid cell.

Different from depth sensors, laser scanners usually have
very large FOV, e.g., more than 180 degrees, leading to



large projective errors for SDF. Here we assume local planar
objects, and the error can be expressed as:

rp(γ) = d− dsin(γ) (11)

where d is the measured distance, and γ is the angle between
laser ray and the surface observed in the laser scanner. In
fact, γ can vary from 0 to π/2, leading to maximum error:
rmax = d.

To cope with this problem, we first project semi-static
measurements in every laser scan to the grid cells, but only
update TSDF when the laser scan number exceed Nthre.
For certain grid cell, the TSDF values only need to be
updated when it has laser scan measurements from many
different incidence angles to alleviate the error caused by
small incidence angle. Once the TSDF are updated, 2D
modification of a fast method similarly to [16] is applied to
update the ESDF incrementally. More details on map update
procedure can be found in Algorithm 2.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation and Setup

We used C++ to implement the source code, in which
Ceres solver [32] was used for our proposed nonlinear
optimization framework. The core source code is ROS-free,
but ROS interface was also implemented in our experiment
for visualizing the occupancy grid maps.

In order to evaluate our proposed approach, we conducted
experiments in four different indoor places. [2] is used
for offline mapping, and the map grid size is 5cm. As
mentioned previously, it is important to note the proposed
algorithm does not place any limitation on the choice of the
mapping algorithm and we used [2] due to its open-source
implementation. The computed occupancy grid map of the
four environments are showed in Fig 4, and example images
are also provided in Fig 5.

B. Results

1) Convergence and Accuracy: We first compare the
proposed approach against [7] (termed AMCL), which
is a Monte Carlo localization approach [7] with KLD-
sampling [33]. The Monte Carlo based algorithms are widely
used in robotics and autonomous driving applications. The
online open source implementation [34] is used in our
experiments. For quantitative evaluation, we use the metrics
described in [35] to compare the pose errors (transitional and
rotational elements).

The first experiment is to evaluate the capability of
optimization convergence. Specifically, we tested whether
different methods can converge (generate pose estimates
with small errors), when the input pose estimates are of
large errors. To do this, we manually added positional and
rotational errors to initial pose estimate for the proposed
method and [34], and tested the maximum allowable errors
for both. To decouple the effect of transition and rotation,
we separated them in input pose estimates. For example, for
evaluating the transitional components, we only added errors
to themselves and left rotational elements unchanged.

TABLE I: Convergence evaluation: Maximum allowable
added errors for both methods that can still operate (yield
acceptable localization performance).

SDF-Loc [34]

OFFICE
Max. allowable initial position err. (m) 2.72 1.31
Max. allowable initial rotation err. (deg.) 30.2 10.3

RESTAURANT
Max. allowable initial position err. (m) 1.69 0.94
Max. allowable initial rotation err. (deg.) 20.7 10.9

HOTEL
Max. allowable initial position err. (m) 2.13 1.02
Max. allowable initial rotation err. (deg.) 38.1 21.5

HALL
Max. allowable initial position err. (m) 1.52 1.06
Max. allowable initial rotation err. (deg.) 23.8 11.7

Also, since we will show the necessity and performance of
the sliding window optimiser later, in this test, we constantly
set the sliding window size to be 1, to focus on the map
representation and ESDF scan-to-map cost function. Table
I shows that the proposed algorithm outperforms competing
method by a wide margin. In all four tested environments,
the proposed algorithm can all cope with large initial errors.
This indicates that, the proposed map formulation and cost
function is better suited for the purpose of localization.

We also compared the general performance of the pro-
posed algorithm and AMCL, when both algorithms are
provided with identical reasonable initial pose estimates. We
set the maximum particle number to be 400, which can vary
over time. Additionally, we set the sliding window size to
be 7, and the detailed analysis of sliding window size can
be found in the next section.

The experimental results can be seen in the Table II. Our
method clearly performs better in terms of both localization
accuracy and runtime. We note that, this is achieved by
both the hybrid SDF map representation as well as sliding
window estimator formulation. On one hand, the hybrid SDF
map representation makes itself more suitable for nonlinear
optimization, leading to better convergence. On the other
hand, the sliding window estimator consistently combines
frame-to-frame and frame-to-map constraints, results in bet-
ter tightly coupled information fusion.

2) Sliding Window Formulation: We also conducted an
experiment to evaluate the performance of the proposed
algorithm with different sliding window sizes. It is important
to note that, when the sliding window size equals 1, the
frame-to-frame constraint won’t be effectively used. As a
result, the estimator formulation becomes similarly to [3],
with different map representation though.

The experimental results of accuracy and runtime are
shown in Fig. 6. We first note that, when the window size is
1, the largest error is obtained. This indicates the necessity of
having more frames for joint optimization as well as the need
of frame-to-frame constraint. Also, due to limited space in
the paper, we did not present experimental results against [3],
while our tests also indirectly indicate that our proposed
formulation can better deal with the problem of laser based



(a) office1 (b) office2 (c) office3

(d) restaurant (e) hotel (f) hall

Fig. 4: Occupancy grid map in three office localizations, a local restaurant, a hotel, and a hall. Black color represents
Occupied space, white color represents Free space, and gray color shows Unknown space.

Fig. 5: Four typical images for indoor scenarios, office (top
left), restaurant (top right), hotel (bottom left), hall (bottom
right)

TABLE II: Localization error and runtime

Proposed Algorithm AMCL[34]

OFFICE
Absolute transitional (m) 0.040379 0.051379
Absolute rotational ( degree ) 0.396035 0.843618
runtime (ms) 10.62 27.58

RESTAURANT
Absolute transitional (m) 0.049022 0.051961
Absolute rotational ( degree ) 0.507419 0.63468
runtime (ms) 9.20 17.73

HOTEL
Absolute transitional (m) 0.046132 0.057461
Absolute rotational ( degree ) 0.407419 0.507419
runtime (ms) 9.93 20.57

HALL
Absolute transitional (m) 0.047557 0.064310
Absolute rotational ( degree ) 0.524398 0.671429
runtime (ms) 10.51 22.72

localization. Moreover, we note that, when the number of
sliding window poses increases, the accuracy will increase,
but there exists a ’cut-off’ number: when 7 poses are used for
optimization, introducing more poses leads to less accuracy
gain.
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Fig. 6: Localization error and runtime for different sliding
window size (N = 1 ∼ 10) in office scenarios.

3) Map update: Although it is difficult to directly evaluate
map update performance, we are still able to compare the
localization accuracy with and without map updates. This
will show the importance of conducting the map update
process. To do that, we conducted two experiments: 1)
indoor localization with re-arranged furnitures, and 2) office
localization with moved large planar objects.

Results are shown in Table III. We can clearly find
that, when map update is performed, it better characterizes
the current environmental conditions and leads to better
localization accuracy. This also indicates that, to have real-
world robotic system deployment, this module is absolutely



TABLE III: Localization accuracy with and without map
update

with original map with updated map

Re-arranged furniture test
Position error (m) 0.052473 0.042187
Rotation error (deg.) 0.63121 0.53901

Moved large planar object test
Position error (m) 0.055269 0.041254
Rotation error (deg.) 0.66398 0.50032

necessary, since the dynamic scene changes are inevitable.
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[24] Tomáš Krajnı́k, Jaime Pulido Fentanes, Marc Hanheide, and Tom
Duckett. Persistent localization and life-long mapping in changing
environments using the frequency map enhancement. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 4558–4563, 2016.
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